
`International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-7,October 2015
 ISSN: 2395-3470

www.ijseas.com

138

A Knapsack Based CPU Process Scheduling Using Neelsack Algorithm

Neelakantagouda Patil1,
1 Torry Harris Business Solutions, Bangalore, India

Abstract

Scheduling concept has gained much popularity since
the advent of the operating systems scheduling policies,
networking packets scheduling and also because of
many research and analysis in data mining and many
simulations based systems. Specific to the operating
systems, it becomes very important to reduce the load
on processor, which is critical resource. Thus utilizing
the CPU to maximum possible extent and ensuring that
all the processes get served by the CPU. There are
many process scheduling algorithms like FIFO,
priority, round robin which individually address on
different performance measures like waiting time,
turnaround time, throughput etc., with the fact that no
one are proved to be the best with all the performance
measures. This new proposed technique is designed on
the base of the optimization technique and proved to
show improvements in the different performance
measures with appropriate results and experimental
facts with different cases. The main agenda here is to
show case that optimization technique can be used to
schedule processes.
Keywords: CPU Scheduling, Round Robin, Dynamic
programming, knapsack, turnaround time, waiting
time, starvation.

1. Introduction

 The necessity of scheduling has seen drastic

change in the last few decades and the reason behind is
now we are in the information age, where the data
feeding, storing, processing, retrieving has become a
vital concept. This process of doing things needs lot of
processing and computational capabilities. Again
thinking on the edge of technological advancement we
can see laptops, tablets and smart phones are getting
more compact to capture market and attract customers
from their micro designs, using advanced technologies
and hardware designs, thus making handy and lesser
weighed devices. But looking at the other face of this,

challenge is not to compromise on the performance
which is also equally critical to retain customers. So
this is where the advanced science needs the touch of
basic science and its methodologies. In this context the
scheduling process for operating system is helpful in
getting advanced and updated techniques to adjust and
serve the current technological expectations in the
fields like data mining technology, networking,
operating system and many more.

 Scheduling generally in any field means

making a set of tasks of same kind work together
sharing same resource at same time, fixing or
allocating the appropriate time or resource such that
each task can complete like others. In the design of
computers each and every single parts are scheduled,
and CPU must be scheduled, as it is the core part for
operations. Scheduling is implemented at operating
system level for serving the set of processes that come
into it with the request. There exist many techniques
for scheduling[1] the processes in operating systems, it
may be like FIFO(First Come First Serve) or others
like SJF(Shortest Job First),Priority based, Round
robin[2] and many more. These are designed to
schedule processes in CPU and in particular case one
will be better applicable than others in few
performance measures[3]. The most advanced
scheduling can be less efficient than other in some
cases.

 This new approach can be proposed as more
efficient scheduling algorithm than existing ones(at
least in few cases, it's based on the operating system to
select for the situation given). The approach followed
is applying optimization technique, which has its own
vast application. The aim of optimization technique is
to get a maximum optimized solution for any given
problem. To be more specific in this new approach of
scheduling, knapsack algorithm[4], has been applied
which is a dynamic programming technique[5].

`International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-7,October 2015
 ISSN: 2395-3470

www.ijseas.com

139

2. Overview

Any operating system works on the basic principle
of serving one or more process at the same time, but it
is mere illusion that the operating system does that.
Instead it will serve the process in a given short time
slice and since it is very small time that we can`t even
notice. In the same instance OS also needs to handle
multiple process that arrive with the request. As the
processes have different burst time, different arrival
time, so such all complexities make the design of
scheduling really challenging.

Since the need for scheduling process was very

basic, there were many researches took place. As a
result of which new algorithms were invented. Then
regarding quality of the scheduling algorithms, it is
measured with different approaches and also based on
how it behaves with the increase in number of
processes that arrive to the CPU. The scheduling
algorithms quality or efficiency can be measure by
many parameters like CPU utilization, through put,
waiting time, response time, turnaround time, context
switching, which considers different aspects to
measure the CPU scheduling, and also it is known that,
no one scheduling algorithm alone is proved best in all
the mentioned parameters. In this project the waiting
time(Amount of time spent as ready to run) and
turnaround time(Mean time from submission to
completion of process) are considered for measuring
the newly proposed algorithm with other existing ones.

 As we know the schedulers can be classified as

long-term scheduler(LTS), Medium term
scheduler(MTS) and short term scheduler(STS)[6]. In
which LTS is executed less frequently and which is
responsible for admission of new process to the system,
MTS is executed more frequently than LTS and is
responsible to control the number of processes that are
in main memory and also to control the temporary
removal of process from memory. Finally STS is most
frequently executed scheduler and it is actually
responsible for assignment of CPU to ready process.
We can also observe that most of the research and
developments are on the study of short term schedulers,
since they are the schedulers which can decide the
process scheduling at the leaf level. The newly

proposed algorithm for scheduling will also falls under
the category of STS.

 As a part of discussion about the most integral
part of this Neelsack algorithm, the discussion is on
the knapsack algorithm which is the vital part of this
algorithm. Knapsack is basically a dynamic computer
programming technique, which is based on the analogy
for the problem that a robber has a bag with capacity(C
kg) and he has to chose and fill that bag with the
available items, so that he gets maximum profit.
Among the n items with different
values(V1,V2,V3,......,Vn) and different
weights(W1,W2,W3,....,Wn) the decision should be
made. The knapsack algorithm is the solution for this
classical problem. It has two kinds, one is fractional,
where robber can break the item and can take the
fractional part of it and other is 0-1 knapsack, where
robber can't break the item and the only option he has
is to take the full item or drop idea of taking it. The
Neelsack algorithm is using the first kind of
knapsack(fractional). The reason for using the
fractional knapsack is that, the process can be served
by dividing its burst time, since there is no restriction
that the process should be served completely at
once(allocating CPU for its full burst time). It's clearly
explained in the later sections.

3. Working Principle

 As discussed, the basic ideology is completely
based on using the knapsack technique in process
scheduling. The Neelsack scheduling relates the
knapsack terminologies into process scheduling
terminologies. The weight of the bag in knapsack is
assumed to be the capacity of the CPU here, then the
items in knapsack problem are assumed to be the
processes in this case and the weights of the items are
assumed to be the burst time of that respective process
and also items value is considered as priority given to
the process. The main theme of using this special
analogy is that the purpose of knapsack algorithm is
that it chooses the best possible item for the robber so
that he gets maximum profit and the purpose of the
scheduling is also selecting the right process for CPU
by considering its priority, so since the purpose is

`International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-7,October 2015
 ISSN: 2395-3470

www.ijseas.com

140

same but application is for different purpose, hence
blending of the one of the dynamic technique for this
new scheduling makes this technique of process
scheduling very efficient.

There are few steps the Neelsack algorithm follows.

3.1 Read input for processing.

For this algorithm we need few parameters like
number of process in CPU queue, their respective burst
time and priority.

3.2 Calculation of capacity in each iteration

This step is the decision making step of entire
algorithm, as the important parameter i.e., capacity is
decided here.
It is calculated as the ratio of sum of BT of all the
processes and number of processes at current iteration.
It is noteworthy that, at each iteration capacity for the
knapsack algorithm is decided dynamically, and also it
keeps on changing as the BT of the each process and
also the number of processes need to be served at
current iteration keeps on changing. This usually goes
on decreasing for each iteration. Unlike round robin
where the quantum(capacity in Neelsack case) is
constant, the capacity keeps changing dynamically
based on the service it needs to provide. This dynamic
nature also boosts the performance.

3.3 Application of Knapsack.

In each iteration after the calculation of capacity
knapsack technique is applied as the part of this
algorithm. This is done with the analogy on matching
parameters. It is as follows.
 i)Number of process: Number of items.
 ii)Burst time of process: Weights of items.
 iii)Priority of process: Cost of items.

3.4 Inversion of priority.

This step also has its own significance. In this step the
priority is inverted(multiplied by -1) in the sense
positive number to negative and vice versa(value

remains same). This step is important because it
ensures that each process is given importance in case
of allocation, and thereby avoiding the starvation[7] of
least priority process unlike priority based scheduling.
If the process has been served completely than it will
nullify the priority of that process, so it will not
participate in the next iterations.

 There after again the iteration repeats the step
3.2, step 3.3 and step 3.4 until all the processes gets
CPU allocation for execution.

4. Algorithm

Pseudo Code: Neelsack Scheduling Algorithm.

Input: a)Number of processes(n).
 b)Burst time(BT) and
 c)Priority(PR) for each process.
Output: CPU allocation pattern for each

 process.
Step 1:Read number of processes.
Step2 :Read burst time and priority of each

 process respectively.
Step 3:Calculate initial β value(Sum of BT

 of all the processes/Number of
 processes).

Step 4:Apply Knapsack algorithm(With
 Replacement assumptions of input
 parameters:

 a) Number of processes(n) as Items in
 the knapsack.

 b) Burst time(BT) of each process as
 the weight of the each process.

 c) Priority(PR) of each process as the
 cost of the each process).

Step 5: Invert the priority of processes which
 got CPU for current iteration
 (multiply priority value by -1) and
 nullify if that process is completely
 served.

Step 6:Goto Step 3(Until all the processes
 have CPU and gets completed)

Step 7:Display result with CPU allocation
 pattern for each process.

`International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-7,October 2015
 ISSN: 2395-3470

www.ijseas.com

141

 Neelsack algorithm is an iterative scheduling
algorithm. Iteratively this uses knapsack algorithm.
The execution or process flow of Neelsack can be as
depicted in the Fig 1.

Fig. 1 : Process Flow chart for Neelsack algorithm.

Process starts with accepting the input, that includes
the number of process, their burst time(BT) and
priority(PR) and followed by the calculation of
capacity(β) as mentioned in the working principle
section. The knapsack function called internally, using
the logic and benefit of dynamic programming to find
the best process(es) for which the CPU has to be
allocated for the current iteration. Inversion of priority
has to be done in few cases like when process gets
CPU for execution, the clear reason behind this is to
avoid starvation of any process. In case of the process
has negative priority and also it has not got CPU in the
current iteration for execution, the inversion of priority
is applied for again the same reason of avoiding
starvation.
This process iterates till the check of total burst
time(β) is lesser than or equal zero.

5. Results

 Measuring parameters like turnaround time and
waiting time are considered. These parameters are
measured in different cases and scenarios and also
compared with the existing scheduling algorithms like
FCFS and Round robin. For the purpose of depicting
the quality of this algorithm few cases are
demonstrated. In these random sample cases, the
output from each iterations are noted and analyzed and
the final result is compared with the FCFS and Round
robin technique of scheduling.

Case 1: Random burst time and random priority

In this case as we can see the input in the table 1, we
have 5 processes which have different burst time and
also different priority . In fourth iteration all process
will have 0 burst time left with null priority.

Table 1: Input for case 1

Process ID Burst
Time(ms) Priority

P0 12 3

`International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-7,October 2015
 ISSN: 2395-3470

www.ijseas.com

142

P1 2 1
P2 3 3
P3 2 4
P4 6 2

Initially calculation is for capacity
 (β)=α/n (1)
where α=(12+2+3+2+6)=25.
i.e., β=25/5=5.

The knapsack analogy is applied using the Eq. (1) and
it selects P2 and P3 with the capacity 5. Since these
two process are completely served there priority has
been nullified as in the table 1(a). This is the common
process which continues till all process are served.
Other major discussion is on rounding off the
calculated value to the lower value, this is because the
capacity can be in fractional and but burst time can't
be. We can't make rounding to the higher value
because capacity can't be increased. Hence we are
making the rounding of the fractional value of capacity
to lower value. This rounding is done iteration 2 and 4
of case 1.

Table 1(a): After 1st iteration(with β=5)

Process ID Burst
Time(ms) Priority

P0 12 3
P1 2 1
P2 0 Null
P3 0 Null
P4 6 2

Table 1(b): After 2nd iteration(with β=6.66≈6)

Process ID Burst
Time(ms) Priority

P0 12 3
P1 0 Null
P2 0 Null

P3 0 Null
P4 2 -2

Table 1(c): After 3rd iteration(with β=7)

Process ID Burst
Time(ms) Priority

P0 5 -3
P1 0 Null
P2 0 Null
P3 0 Null
P4 2 2

 Fig. 2 : Gann chart depicted for case 1

Table 2(a): Case 1 turnaround time result comparison

Process ID
Turnaround time(ms)

Round
robin

Priority
based

Neelsack

P0 25 20 25
P1 7 2 11
P2 12 25 5
P3 23 8 2
P4 23 8 20

Avg.
Turnaround

time
15.4 15.6 12.6

Table 2(b): Case 1 waiting time result comparison

Process ID Waiting time(ms)
Round Priority Neelsack

`International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-7,October 2015
 ISSN: 2395-3470

www.ijseas.com

143

robin based
P0 13 8 13
P1 5 0 9
P2 7 20 2
P3 10 23 0
P4 17 2 14

Avg.
Waiting

time
10.4 10.6 7.6

As in the Gann chart depicted in the Fig. 2. The P3 and
P2(fully) are served first iteration and that the
P4(partially) and P1(fully) in second iteration and in
the third iteration P4(partially) and P0(fully). We can
note that process are severed partially as you can see in
case of P4, so that`s why it is using fractional knapsack
as mentioned in the overview section.

Case 2: Random burst time and same priority.

In this case also working of algorithm is same as case
1. The input has different burst time but same
priorities. In fifth iteration all process will have 0 burst
time and left with null priority.

Table 3: Input for case 2

Process
ID

Burst
Time(ms) Priority

P0 11 2
P1 18 2
P2 4 2
P3 13 2

Table 3(a): After 1st iteration(with β=11.5≈11)

Process ID Burst
Time(ms) Priority

P0 4 -2
P1 18 2
P2 0 Null
P3 13 2

Table 3(b): After 2nd iteration(with β=11.67≈11)

Process ID Burst
Time(ms) Priority

P0 4 2
P1 18 2
P2 0 Null
P3 2 -2

Table 3(c): After 3rd iteration(with β=8)

Process ID Burst
Time(ms) Priority

P0 0 Null
P1 14 -2
P2 0 Null
P3 2 2

Table 3(d): After 4th iteration(with β=8)

Process ID Burst
Time(ms) Priority

P0 0 Null
P1 8 2
P2 0 Null
P3 0 Null

Table 4(a): Case 2 time around time result comparison

Process
ID

Turnaround time(ms)
Round
robin

Priority
based

Neelsack

P0 11 11 26
P1 44 29 46
P2 26 33 4
P3 37 46 32

Avg.
turnaround

time
29.5 29.75 27

Table 4(b): Case 2 waiting time result comparison

`International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-7,October 2015
 ISSN: 2395-3470

www.ijseas.com

144

Process
ID

Waiting time(ms)
Round
robin

Priority
based

Neelsack

P0 0 0 22
P1 26 11 28
P2 22 29 0
P3 33 33 19

Avg.
waiting

time
20.25 18.25 17.25

Fig 3: Gann chart depicted for case 2

In case of same burst time and same priority or same
burst time different priority, all the three algorithms
have same turnaround time and same waiting
time(assuming the quantum for round robin is same as
burst time). So in these cases we can conclude that all
the three algorithms are equally efficient.

Result Comparison:
Case 1:

Fig 4: Result for Case 1

Case 2:

Fig 5: Result for Case 2

As in the result for both the cases as shown in the
above Fig 4 and Fig 5, the result for both turnaround
time and waiting time of Neelsack is better than the
other two. So this can depict that the Neelsack
algorithm can be implemented and also used as
operating system process scheduler.

6.Scope

 On successful implementation and deployment
of this algorithm to the operating system work
environment, it will have the direct impact on
performance, as it is shown it is better than few other
algorithms. Because of the drawbacks that no algorithm
is proved best to use in all the scenarios. This newly
designed algorithm can be used in some cases chosen
by implementers, as in most of the cases it is better than
the round robin and FCFS, which are individually good
in some cases. It can have a major hand by playing a
role of short term scheduler in the operations of
measuring devices and can serve in many fields where
processing time and performance is the prime factor.

7.Conclusion

 As discussed in the abstract of this paper there
are many existing short term operating systems
schedulers, and they are efficient and powerful in
certain cases(based on the measuring parameters). Any
single algorithm can't be declared as the best at all
cases. So through this new algorithm it is shown a new
dimension for research on scheduling, observing the
cube of problem in different dimensions. Mean while
it's not possible to simulate any scheduling algorithm`s
working accurately and exact performance can only be

`International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-7,October 2015
 ISSN: 2395-3470

www.ijseas.com

145

observed in live operating system operation. Solution to
scheduling can be provided using lots of classical
problems from the field of computing and it`s just one
other to show case one useful technique. The results
that are captured are just positive scenarios that shows
this algorithm can be useful in few cases like others in
few other cases. Since there are many factors like
dynamic capacity selection and priority inversion, it
showed significance impact on performance and it can
be operating system implementers choice based on the
hardware configuration and process handing
mechanism used.

8.References

[1] International Journal of Advanced Research in
Computer Science and Software Engineering, Volume
3, Issue 5, May 2013, ISSN: 2277 128X.

[2]International Journal of Computers and Distributed
Systems Vol. No.3, Issue I, April-May 2013 by
ANKUR BHARDWAJ.

[3] International Journal of Scientific Engineering and
Research (IJSER): Volume 2 Issue 3, March 2014, by
Mahima Shrivastava.

[4] David Pasinger Phd. thesis, February
1995,Dept. Of Computer Science, University of
Copenhagen, Universitetsparken 1,DK-2100
Copenhagen, Denmark.

[5]http://community.topcoder.com/tc?module=Static&d
1=tutorials&d2=dynProg - A TopCoder.com article by
Dumitru on Dynamic Programming.

[6] A Comparative Study of CPU Scheduling
Algorithms Neetu Goel: www.ifrsa.org.

[7]https://en.wikipedia.org/wiki/Starvation_(computer_
science)

First Author Neelakantagouda S Patil, Bachelor of
Engineering(2009-13) in Information Science and
engineering from Visvesvaraya technological
university(VTU, Belgaum), currently working as

software engineer with Torry harris business solutions,
Bangalore. My major research interest lies in the field
of operating systems, data mining and image
processing.

